Saturday, August 8, 2020
US flag

When ice melts on Earth, it happens layer by layer

We have all studied in chemistry class and possibly in physics the heating curve for water, showing that as heat is added to ice, the temperature rises to 0°C and holds there as the ice melts, then rises to 100°C and holds there as the water evaporates into steam, then rises beyond that.

heating curve for water, Univ of Texas
Heating curve of water (University of Texas)

This idealized curve tells us nothing of the mechanism for melting, though, and since we need to know how ice melts in order to understand how the polar ice caps and glaciers melt as the planet’s climate changes, scientists took a closer look.

We all know that water melts at 0°C. However, 150 years ago the famous physicist Michael Faraday discovered that at the surface of frozen ice, well below 0°C, a thin film of liquid-like water is present. This thin film makes ice slippery and is crucial for the motion of glaciers.

Since Faraday’s discovery, the properties of this water-like layer have been the research topic of scientists all over the world, which has entailed considerable controversy: at what temperature does the surface become liquid-like? How does the thickness of the layer dependent on temperature? How does the thickness of the layer increases with temperature? Continuously? Stepwise? Experiments to date have generally shown a very thin layer, which continuously grows in thickness up to 45 nanometers right below the bulk melting point at 0°C. This also illustrates why it has been so challenging to study this layer of liquid-like water on ice: 45 nm is about 1/1000th part of a human hair and is not discernible by eye.

Scientists of the Max Planck Institute for Polymer Research, in a collaboration with researchers from the Netherlands, the US, and Japan, have succeeded to study the properties of this quasi-liquid layer on ice at the molecular level using advanced surface-specific spectroscopy and computer simulations. The results are published in the latest edition of the scientific journal Proceedings of the National Academy of Science (PNAS).

The team of scientists around Ellen Backus, group leader at MPI-P, investigated how the thin liquid layer is formed on ice, how it grows with increasing temperature, and if it is distinguishable from normal liquid water. These studies required well-defined ice crystal surfaces. Therefore much effort was put into creating ~10 cm large single crystals of ice, which could be cut in such a way that the surface structure was precisely known.

To investigate whether the surface was solid or liquid, the team made use of the fact that water molecules in the liquid have a weaker interaction with each other compared to water molecules in ice. Using their interfacial spectroscopy, combined with the controlled heating of the ice crystal, the researchers were able to quantify the change in the interaction between water molecules directly at the interface between ice and air.

The experimental results, combined with the simulations, showed that the first molecular layer at the ice surface has already molten at temperatures as low as –38°C (235 K), the lowest temperature the researchers could experimentally investigate. Increasing the temperature to –16°C (257 K), the second layer becomes liquid. Contrary to popular belief, the surface melting of ice is not a continuous process, but occurs in a discontinuous, layer-by-layer fashion.

“A further important question for us was, whether one could distinguish between the properties of the quasi-liquid layer and those of normal water” says Mischa Bonn, co-author of the paper and director at the MPI-P. And indeed, the quasi-liquid layer at –4°C (269 K) shows a different spectroscopic response than supercooled water at the same temperature; in the quasi-liquid layer, the water molecules seem to interact more strongly than in liquid water.

The results are not only important for a fundamental understanding of ice, but also for climate science, where much research takes place on catalytic reactions on ice surfaces, for which the understanding of the ice surface structure is crucial.

Paul Katula is the executive editor of the Voxitatis Research Foundation, which publishes this blog. For more information, see the About page.

Recent posts

Voxitatis congratulates the COVID Class of 2020

2020 is unique and, for high school graduates, different from anything they've seen. Proms, spring sports, & many graduation ceremonies are cancelled. Time for something new.

Vertical addition (m3.nbt.2) math practice

3rd grade, numbers and operations in base 10, 2, 3-digit vertical addition practice problem

Rubber ducks (m3.oa.1) math practice

3rd grade, operational and algebraic thinking, 1, rubber ducky modeling practice problem

Distance learning begins as Covid-19 thrives

What we learn during & from coronavirus, a challenging & imminent crisis, will provide insights into so many aspects of our lives.

Calif. h.s. choir sings with social distancing

Performances with the assistance of technology can spread inspiration across the globe even as the coronavirus spreads illness and disease.

Families plan to stay healthy during closures

Although schools are doing what they can to keep students learning and healthy during the coronavirus outbreak, that duty now shifts to parents.

Illinois temporarily closes all schools

IL schools will be closed on Tuesday, March 17, through at least March 30. Schools in 18 states are now closed due to coronavirus.

Coronavirus closures & cancellations

Many schools are closed and sports tournaments cancelled across America during what the president called a national emergency: coronavirus.

Coronavirus closes schools in Seattle

The coronavirus pandemic has caused colleges to cancel classes, and now Seattle Public Schools became the nation's first large district to cancel classes due to the virus.

Most detailed images ever of the sun

A new telescope at the National Solar Observatory snapped the most detailed pictures of the sun's surface we have ever seen.

Feds boost Bay funding

Restoration efforts in the Chesapeake Bay watershed received a boost in federal funding in the budget Congress passed last month.